Single pion crosssections in NEUT

Everything is work in progress, nothing is propagated anywhere yet! (and I do not speak on behalf of anyone but myself)

Imperial College London Clarence Wret, c.wret14@imperial.ac.uk Nu-Tune 2016, Liverpool 12 July 2016

Outline

- Modelling single pion production in NEUT
- Bubble chamber fits
- Nuclear target complications and my approach
- Nuclear fits
- General comments on how we might make this easier...

Interlaced with random comments about the data

External data

- There's a tonne of data available!
 - Ranging from the 60s to present day
 - Variety of targets with a variety of fluxes in many different kinematic variables
- Bubble chamber experiments with clean nucleon interactions

Nuclear experiments with complicated nuclear environments

- Nucleon models might become effective, how do we feel about that?

Imperial College London

External data

- Most have some subtleties
 - Cutting phase space and then unfolding with MC
 - Correct for phase space cuts by overall normalisation
 - Fluxes which are "published" as conferences proceedings
 - Specific data not available in publication but in PhD theses
- I'll go through a few of these and why I think care needs to be taken... Also a humbling reminder from FKR:

ficing theoretical adequacy for simplicity. We shall choose a relativistic theory which is naive and obviously wrong in its simplicity, but which is definite and in which we can calculate as many things as possible – not expecting the results to agree exactly with experiment, but to see how closely our "shadow of the truth" equation gives a partial reflection of reality. In our attempt to maintain simplicity, we shall evidently have to violate known principles of a complete relativistic field theory (for example, unitarity). We shall attempt to modify our calculated results in a general way to allow, in a vague way, for these errors.

(Borrowed from K. Graczyk)

the slope of the Regge trajectories, and the masses of the particles, 75 matrix elements are calculated, of which more than $\frac{3}{4}$ agree with the experimental values within 40%. The problems of extending this calculational scheme to a viable physical theory are discussed.

NEUT single pion model

- Rein-Sehgal model (highlighting differences to GENIE):
 - Form-factor tuned to the Delta resonance $C_{A^5}(0)$, Graczyk-Sobczyk
 - Lepton mass effects, Berger-Sehgal (I think GENIE has this?)
 - Includes resonance-resonance interferences
 - Includes a non-interfering non-resonant I¹/₂ background, as prescribed by Rein-Sehgal (no DIS scaling)
 - Outgoing pion generated an-isotropically from P(1232) amplitude and spherical harmonics, as prescribed by Rein-Sehgal
- Three parameters: M_A^{RES} , $C_A^{5}(0)$, non-resonant scaling
- In nuclear environment add pion FSI parameters and DIS scaling
 - Tricky to tune using only 1π data; will need priors from "tunes" to N π data from bubble chambers (+MINERvA?)

Fitting the model Three parameters: M_A^{RES}, C_A⁵(0), hon-resonant I=½ scaling

- T2K care mostly about $E_v < 5$ GeV region
 - Delta dominated region for single pion production

- See small effects from higher resonances; partly E_{ν} , partly FSI
- Use W < 1.4 GeV data when possible
- Built on previous work by P de Perio, Phil Rodriguez and Callum
- Have used fitter developed by Patrick, Callum, Luke and myself

 Imperial College

 Clarence Wret

Fitting the model

• In nuclear targets we see strong modifications to the hadronic mass

- Come from pion re-interactions and initial state modelling
- At T2K flux, higher resonances (already small) get washed out; Delta peak significantly widened
 Imperial College
 Clarence Wret

Bubble chambers

- ANL, BNL and Gargamelle sit in the right E_{ν} range for T2K
- Have three v-CC channels from bubble chambers: $CC1\pi^+1p$, $CC1\pi^+1n$ and $CC1\pi^0$ (exists some NC and anti-nu data, but low-ish stats)
- CC1 π +1p (I=3/2) pure resonance interaction, dominated by Δ (1232)

- CC1 π +1n and CC1 π ⁰ more complicated resonance, and non-resonant I½
- All clearly see a dominant $\Delta(1232)$ peak below W < 1.4 GeV
- Higher resonances more excited at higher E_{ν} ; larger cross-section

Bubble chambers

- Three parameters: M_A^{RES} , $C_A^{5}(0)$, non-resonant I=½ scaling
- Makes good sense to fit M_A^{RES} , $C_A^{5}(0)$ to W < 1.4 GeV data
 - Either do CC1 π +1p for pure I=3/2 (non-res. background free)
 - Or all CC channels, with or without I¹/₂ background
 - <u>Or</u> can use fit from W < 1.4 GeV on W < 2.0 GeV, with the intent on better constraining I¹/₂ background (larger contribution at high W)
- ...However, T2K near detector fit ("BANFF") cares little about the theory justification and happily fit all 1π parameters to all 1π events...
 - Are we doing external fits solely to give priors?

Imperial College

London

- How much do we care about the underlying physics?
- I think the latter is difficult; it seems like Rein-Sehgal is unable to predict wide range of E_v cross-sections; acts as effective model?

TZK

ANL and BNL $CC1\pi^+1p$

- Simplest fit is to ANL and BNL CC1π⁺1p channels: σ(E_ν) (Phil & Callum corrected), N(Q²) shape
- Test statistic pdf: Poisson for N(Q²) and Gaussian for $\sigma(E_{\nu})$

$$\chi^2 = \sum_{Q^2 \text{ expt.}}^{\text{Shape}} \left\{ 2\sum_{i=1}^N \left(\mu_i(\vec{x}) - n_i + n_i \log \frac{n_i}{\mu_i(\vec{x})} \right) \right\} + \sum_{E_\nu \text{ expt.}}^{\text{Abs.}} \left\{ \sum_{i=1}^N \frac{\left(n_i - \frac{\mu_i(\vec{x})}{p_{\text{expt}}}\right)^2}{\sigma_i^2} + \left(\frac{p_{\text{expt}} - 1}{\Delta p_{\text{expt}}}\right)^2 \right\}$$

<u>Parameter</u>	<u>Nominal</u>	<u>CC1π[±]1p</u> <u>w/ norm</u>	<u>CC1π[±]1p</u> <u>w/o norm</u>	-0.69	1.00	- 0.8 - 0.6 - 0.4
M_A^RES	0.95 ± 0.15	0.92 ± 0.10	1.00 ± 0.08			0.2 0
C _A ⁵ (0)	1.01 ± 0.12	0.89 ± 0.22	0.95 ± 0.09	1.00	-0.69	0.2 0.4 0.6
ANL norm.	1.00 ± 0.20	0.94 ± 0.14	1.00	MaNFFRES	CA5RES	— -0.8 — -1
BNL norm.	1.00 ± 0.20	1.04 ± 0.10	1.00			

Imperial College London

10

Clarence Wret

ANL and BNL $CC1\pi^+1p$

Clarence Wret

Bubble chambers

- Moving along, can do a "kitchen sink" CC1 π +1p, as suggested by Bob Cousins and Louis Lyons at Phystat-nu Tokyo
- Same test-statistic as before, no normalisation

Imperial College

London

<u>Parameter</u>	<u>Nominal</u>	<u>CC1π[±]1p</u> <u>w/ norm</u>	<u>CC1π[±]1p</u> <u>w/o norm</u>	<u>CC1π⁺1p</u> <u>kitchenSink</u>
M_A^RES	0.95 ± 0.15	0.92 ± 0.10	1.00 ± 0.08	0.89 ± 0.04
C _A ⁵ (0)	1.01 ± 0.12	0.89 ± 0.22	0.95 ± 0.09	1.02 ± 0.05
ANL norm.	1.00 ± 0.20	0.94 ± 0.14	1.00	1.00
BNL norm.	1.00 ± 0.20	1.04 ± 0.10	1.00	1.00

 Adding kinematic distributions allow for less wiggle in parameters, no real surprises; smaller uncertainties

Bubble chambers

• Including all CC channels with W < 1.4 GeV + kitchen-sink

Conclusions on BC

- Have found distributions constraining the kinematics in BC, not seen fit prev.
- See relatively large correlations between M_A and C^A₅; broken by including more kinematic distributions. A bit concerned about Minuit2; MCMC future?
- Not complete body of work:
 - Fit W < 1.4 GeV for M_A and C_5^A , 1.4 < W < 2.0 for I_2^A and use priors
 - Will have to subtract the ANL data to get 1.4 < W < 2.0 range; also only have BNL CC1 π +1p W < 1.4; rest are W < 2.0 GeV
- There's been a lot of previous work on this (e.g. Adler, Rein-Sehgal, Ravndal, Lalakulich, Graczyk-Sobczyk, Berger-Sehgal, Nieves, Martini, Phil-Callum)
- Generally find $M_A = 0.9 \sim 1.2 \text{ GeV/c}^2$, C_5^A (or similar) = 0.95 ~ 1.20
 - My fits seem to agree
- Difficult to tell if model accurately predicts all the data; statistical fluctuations are certainly an issue, mismodelling is a possibility too
 - Haven't showed higher E_{ν} data yet, but joint fit goes horribly wrong

Might be higher resonances mismodelled, might be FKR
 Imperial College
 London

BNL flux was never properly published, had to dive into KEK paper

- BNL flux was never properly published, had to dive into KEK paper history database to find NuInt02 proceedings
- BNL n-channel data is only available with W < 2.0 GeV cuts
 - Makes the fit dominated by ANL data in W < 1.4 GeV
- Shape-only for a lot of distributions: no systematics applied
- CC1 π +1p dominates in statistics so dominates the fit too
 - Many CC1π+1p event rates and kinematic variables (e.g. muon direction in CM frame, pion momentum, proton momentum, Adler angles...)
- There's also GGM, "light propane-freon mixture", with high free-proton density, selected by "kinematical fit"
 - Should still technically see nuclear effects, so excluded here
- Re-binning of N(var) distributions somewhat arbitrarily ($N_{evt} > 5$)

Imperial College London

Bubble chambers, problems

- Low Q² bins are problematic I cut these out
 - Nuclear effects seep in; region which is most sensitive to params
- Bug in NEUT which wrongly sampled the W Q^2 phase space
 - Problem when cutting into W and/or Q^2

- Please contact me if you run into any of the above; all have been fixed/mitigated in one way or another c.wret14@imperial.ac.uk
 - You might have a better fix!

Imperial College London

17

Clarence Wret

Nuclear experiments

- MiniBooNE, MINERvA and T2K are the main factories CCN/1 π^+ (nu), CC1 π^0 (nu, nubar), CC coherent
- K2K has CC1 π +/CCQE ratio, NC1 π ⁰ momentum shape
- SciBooNE has NC1 π^{0} momentum and angle shape
- All sit in an awkward place to constrain the I¹/₂ background
 - MINERvA CC1 π^0 is best bet, future MINERvA CC1 π^+

Clarence Wret

- (New MiniBooNE results?!)
- Attempt to avoid effective model
 - Careful selection of distributions

Imperial College London

Fitting nuclear data

- Rein-Sehgal model predicts dσ/dWdQ²
 - Q² is the natural variable to fit in
 - W isn't a bad idea, but is difficult to reconstruct in nuclear
- $Q^{2} = -m_{\mu}^{2} + 2E_{\nu}(E_{\mu} p_{\mu}\cos\theta_{\mu})$ $W = \sqrt{m_{N}^{2} + 2m_{N}(E_{\nu} E_{\mu}) Q^{2}}$
- Q^2 needs E_v and E_μ and $cos\theta_\mu$
 - E_{μ} is (hopefully) an observable
 - E_v is not; will involve MC dependence in $E_v^{obs} \rightarrow E_v^{true}$
 - The effect is considerable; both pions and nucleons undergo FSI
- Q² and W will rely on Monte-Carlo in experiments; kinematics (hopefully) don't, unless they unfolded over nuclear effects...

Imperial College London

 W^{\pm}

p/n

Fitting nuclear data

- Fit in $T_{\mu} (p_{\mu}) \cos \theta_{\mu}$
 - This is the only direct probe of the vertex interaction
 - Relatively "FSI-free" muons exit nucleus ~cleanly
 - Could potentially agree quite well with predictions using fits from nucleon data
- Getting $T_{\pi}(p_{\pi}) \cos\theta_{\pi}$ correct is not quite as easy
 - Use the "vertex" best-fits from muon and apply these to pion variables; should tell you about pion kinematic mismodelling
 - Fit FSI parameters with priors on 1π parameters from fits to muon kinematics
- Hopefully these are not unfolded!

Fitting nuclear data

- Difference between CC1 π^+ and CC1 π^0 can come from non-resonant background, pion propagation, and DIS mismodelling
 - Can gauge impact by confronting CC1 π^0 muon data with predictions from fitting to CC1 π^+ muon data
 - GENIE, NEUT and NuWro see difficulty in agreeing
 - Generally, if CC1/N π^+ is well modelled, CC1 π^0 is probably not

MiniBooNE CC1 π^+

- Very pure sample, and largest sample on tape (48322)
 - Asks for two Michel electrons (muon and pion contained)
 - All sorts of great distributions; kinetic variables, $Q^2 E_{\nu}$

<u>Parameter</u>	Nominal	BC CC1π [±] 1p w/o norm	BC CC1π [±] 1p <u>kitchen</u>	<u>MiniBooNE</u> 2D μ CC1π [±]
MARES	0.95 ± 0.15	1.00 ± 0.08	0.89 ± 0.04	0.88 ± 0.03
C _A ⁵ (0)	1.01 ± 0.12	0.95 ± 0.09	1.02 ± 0.05	0.87 ± 0.03

Imperial College London

Clarence Wret

MiniBooNE CC1 π^+ problems

- No covariance matrix
- Data looks suspicious, stats err?
 - Unfolding issues?
- Some confusions on W cut:

The absence of a Δ mass constraint also means that the $\pi^+ + N$ invariant mass, which is dominated by the Δ resonance, can be measured. Fig. 9 shows the reconstructed

. . .

 $m_{\pi+N}$ is shown in Fig. 15 Beyond reconstructed masses of 1350 MeV/c², the population of misreconstructed events begins to dominate, so a cut is implemented to remove these events. Fig. 16 shows the improvement

• Mike replied about it:

On 01/07/15 17:14, Michael Wilking wrote:

Hi Clarence,

Sorry for the slow reply. I am doing a lot of traveling at the moment.

FIG. 15: The Monte Carlo m_{pi+N} distribution shows a correlation between the reconstructed and true distributions at low mass. At high reconstructed mass, the distribution is dominated by events with a high energy muon misidentified as a pion. A cut is placed at 1350 MeV/c² to remove these events.

Indeed this issue can be confusing. For the publication, there is a cut on W, as stated, but we then efficiency correct (Minerva does not do this). This means we are essentially using the Nuance model to fill in the reconstructed high W events. This is needed because most of the events that are reconstructed at high W are really just muons misidentified as pions (this is also the reason for imposing the cut in the first place).

• The largest CC1 π^{\pm} data-set is NUANCE above W ~ 1.35 GeV...

Clarence Wret

Predicting nuclear using nucleon

- Doesn't do all too well; nominal is sometimes better
- See fairly large differences in the best-fits from nucleons; only shown one of many variations here to predict the nuclear data
- MINERvA CC1 π^0 will see a large non-resonant background contribution and DIS components, not constrained from nucleons
- Will (hopefully) improve once I'm happy with the nucleon fits
- Alternatively, can feed nucleon priors into a nuclear fit
 - Will probably need to inflate errors from nucleons for prior

Predicting nuclear using nuclear

- Doesn't look too bad: χ^2 improves in every distribution
- Good place to start for a global nuclear fit

Imperial College

Londor

- Brings up another problem that Patrick also sees
 - MINERvA covariance seems too put very strong constraints on the shape of distributions rather than the normalisations
 - Very difficult to judge goodness of fit by eye
 - Is this actual effect in data or unfolding side-effect?
- Combining MiniBooNE and MINERvA doesn't seem to come for free in the pions either

Nuclear experiments, problems

- MiniBooNE lacks covariances; enforces fairly tight constraints on the normalisation of the distributions
- MINERvA's covariances seem to instead enforce strong constraints on the shape of the distribution rather than the normalisation
- Some broken covariances (e.g. MINERvA CC1 π^0 , CC coherent)
- Not always clear from one read what event selection is
 - MINERvA CC1 π^{\pm} uses a Michel tag, effectively making it CC1 π^{+} ; only briefly mentioned. Large difference if you use abs(PID) = 211 rather than PID = 211 for signal
 - MINERVA CCN π^{\pm} data release; also never explicitly states highest pion selected. Not clear from publication if restricted phase space used throughout selection or only for plotting $p_{\mu} \cos \theta_{\mu}$
 - MiniBooNE CC1 π + W < 1.35 GeV cut, previously mentioned
- Probably need internal checks of cross-section before publishing **Imperial College** London

Nuclear conclusions

- A global fit is much harder in the nuclear environment
- Experiments might have done slightly disagreeable things
 - Is the data actually data? How much is MC dependent?
- Need to be careful in selecting data-sets to minimise chance of model becoming effective, or letting experiment MC determine fitted MC
- Data releases are moving in the right direction
 - Multiple distributions, more correlations
 - Less unfolding, more observables; don't be afraid of low acceptance
 - Making an anti- ν cross-section? Publish the ν contamination, and even anti- ν + ν cross-sections; don't rely on your MC or sideband too much
- I probably won't be using any nuclear data in my fits other than gauging error and $\Delta\chi^2$ inflation; subject to change
- Much more data to come; MINERvA, NovA, T2K, LAr experiments

Imperial College London

Vision for the future!

- Rein-Sehgal beautifully models a lot of resonances, but there certainly are short-comings and approximations
- Get a "full Rein-Sehgal" model into generators that predict ejection angles from all resonances (Minoo)
 - Run this through a generator with nuclear effects on top
 - Any improvements? Nucleus washes out fine distributions?
- Start looking into alternative descriptions, e.g. Nieves Delta excitation, Ghent group
- <u>Need to help our experiments to produce useful data</u> releases; once it's analysed it's analysed
- <u>Need to get theorists on experiments</u>

Shameless advertising

- We learnt a lot at Phystat-nu Tokyo: buffs like Bob Cousins, Louis Lyons, Michael Betancourt gave some advice
 - "Fit everything that you're given"

Imperial College

London

- "You can't do much without correlations"
- "If they unfolded, they screwed you over"
- "I've never unfolded in my life and I hope I never have to!"
- If you're in/close to the US, I'd recommend the Fermilab equivalent, Phystat-nu Fermilab (it's \$35!)
 - https://indico.fnal.gov/conferenceDisplay.py?
 ovw=True&confld=11906

Community to-dos

- Build up a comprehensive open library of x-sec results \mathbf{I}
 - Similar to the old Durham bubble chamber data-base (only bubble chambers, and doesn't include all BC dists by miles)
 - Include comments on how much we trust the data and why; what problems we've found (let's not re-invent the wheel...)
- Make comparisons with models and/or generators on an open framework for anyone to look at
 - Important that experimenters know difference between GENIE, NEUT, NuWro, etc rather than thinking they know the differences and then publishing (MINERvA has unfortunately done this)
- Keep pushing for folded data with detector smearing matrices!
 - Aka "fold your MC to data, don't unfold your data to MC"

London

- Stephen Dolan, Callum, Kendall, Kevin et al are advocating at T2K
- Many novel cross-section experiments coming up: let's make them useful for as long as possible
 Imperial College

T2K

Community to-dos

- Experiments seem interested in multiple-generators, which is great!
 Full production in GENIE, NEUT and NuWro (GiBUU?)
 - Would ease future joint oscillation analyses
 - But, needs to be more of us committed to generator work
 - And, more effort for experiment to write general framework
- Need to make generators interesting to students...
- Pushing for more exposed NEUT
 - Tutorials, documentation, much more commented code
- Hope for more meetings like this; the more we talk the better

General conclusions

- Spent a lot of time O(1yr) getting to know the data and NEUT
- We're now moderately good friends: road-map in place to mitigate for issues in the data and model degeneracies
- Similar to what ATLAS MC covered yesterday, LEP \rightarrow Tevatron:
 - Use bubble chamber data to constrain fundamental interaction; much trust because of reconstruction
 - Propagate to reasonable nuclear distributions; choose to minimise possible MC dependence in data
 - Try to explain the observed differences, inflate error?
- More pion models in generators would be great; we know quite little about how FSI and initial state affect observed kinematics

Clarence Wret

What's in the kitchen sink?

- Only W < 1.4 GeV data included:
- ANL CC1ppip
 - $\sigma(E_{v})$, Q² (d σ /dQ² or N(Q²)), cos θ_{u}^{*} , p_{π} , θ_{prot} , ϕ_{Adler} , cos θ_{Adler}

Clarence Wret

- ANL CC1pi0
 - $-\sigma(E_v), N(Q^2), \cos\theta_{u}^*$
- ANL CC1npip
 - $-\sigma(E_v), N(Q^2), \cos\theta_{u}^*$

Imperial College

London

36

 $-\sigma(E_v), N(Q^2)$

What's in the nuclear data?

- MiniBooNE
 - CC1pi+: Enu, Q2, Tmu cosmu, Tpi cospi, Tmu, Tpi, Q2 Enu, Enu Tpi, Enu Tmu
 - CC1pi0: Enu, Q2, cosmu, cospi, ppi0, Tmu
 - CC1pi+/CCQE(-like): Enu
 - NC1pi0: (nu, nubar, nu+nubar in both modes): ppi0, cospi0
- MINERvA
 - CC1pi+ (old):
 - CC1pi0 (nubar new, old)
 - CCNpi+ (new, old)
- K2K
 - CC1pi+/CCQE
 - NC1pi0
- SciBooNE
 - NC1pi0
- T2K
 - CC1pi+ H2O
 - CC1pi+ CH coming
 - CC1pi0 coming

Imperial College London

Concern about Q2 shape-only bias

- A lot of information available in Q² distributions, we but miss good chunks because ANL and BNL only published N(Q²), not $d\sigma/dQ^2$
- NEUT over-estimates MiniBooNE and MINERvA $d\sigma/dQ^2$ but underestimates nucleons

ANL $d\sigma/dQ^2$ fit

- A lot of information available in Q² distributions, we but miss good chunks because ANL and BNL only published N(Q²), not dσ/dQ²
- NEUT over-estimates MiniBooNE and MINERvA $d\sigma/dQ^2$ but underestimates nucleons

- Try to fit only ANL dσ/dQ²; M_A = 1.03±0.08 (0.95±0.16), C_A⁵ = 1.14±0.16 (1.01±0.25)
- Change in M_A and C_A^5 almost perfectly becomes a normalisation change...
- Would have had nuclear predictions if computers cooperated...

Imperial College London