

NUISANCE

Luke Pickering

NNN19: 2019/11/08

Supported by U.S. DOE: Award DE-SC0015903

Team NUISANCE

Comparison tools used in this talk developed as part of NUISANCE with numerous external contributions: Special thanks to A. Mastbaum and S. Dolan!

C. Wret

MICHIGAN STATE

C. Wilkinson

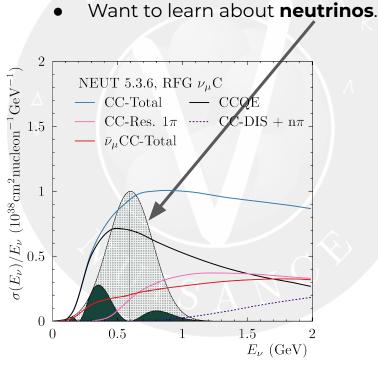
⁶ UNIVERSITÄT BERN

This Talk

- How do we use neutrino interaction models
- What is NUISANCE
- Some recent comparisons
- What do global cross-section fitters really want? #3 will shock you!

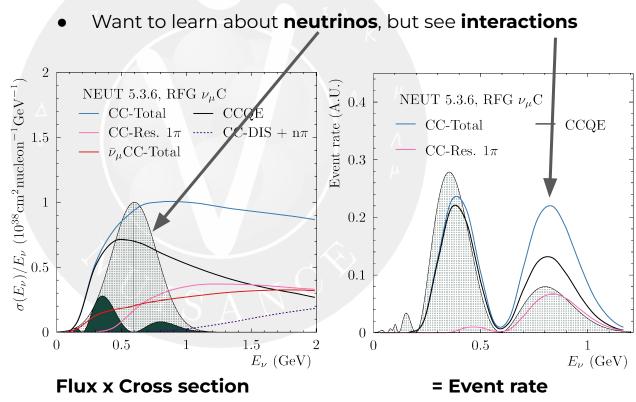
This Talk

- How do we use neutrino interaction models
- What is NUISANCE
- Some recent comparisons
- What do global cross-section fitters really want? #3 will shock you!


Disclaimer: This talk will mostly focus on data/worries of few-GeV, long baseline neutrino experiments.

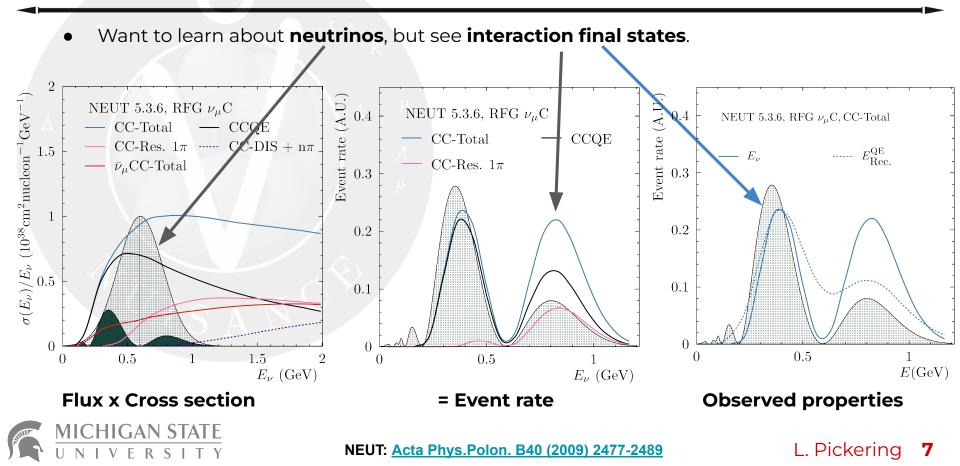
I am a T2K and DUNE collaborator: Feel free to call me out on any biases!

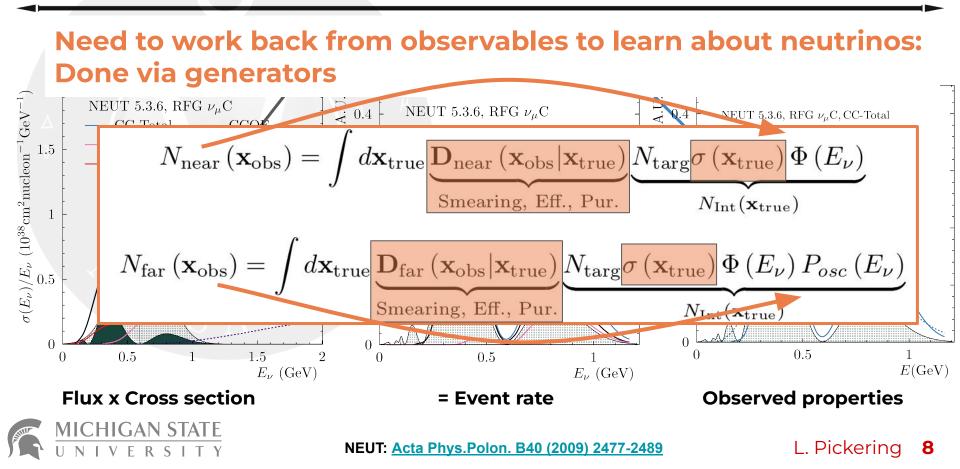
L. Pickering 4



Flux x Cross section

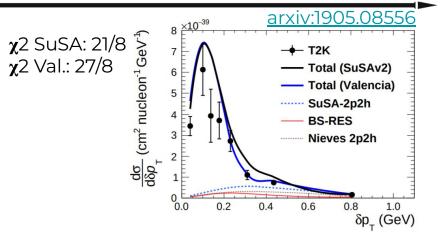
NEUT: Acta Phys.Polon. B40 (2009) 2477-2489



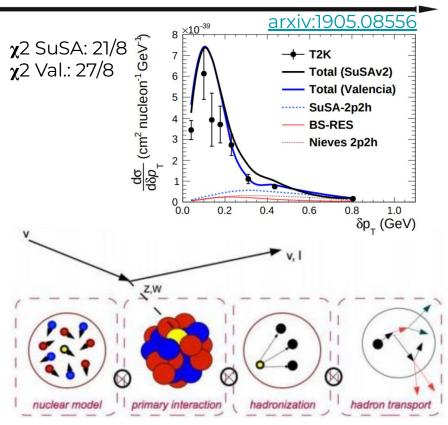


MICHIGAN STATE UNIVERSITY

NEUT: Acta Phys.Polon. B40 (2009) 2477-2489

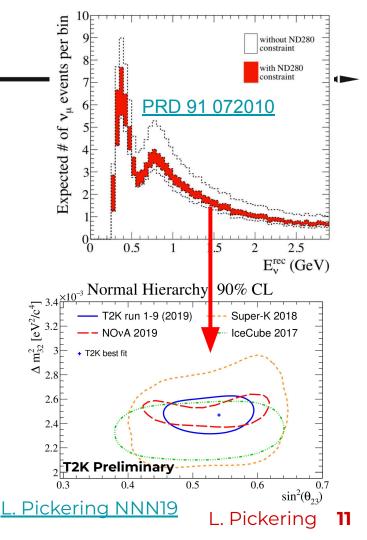

L. Pickering 6

How do we try and improve them: Theory


- Improve nuclear response models in generators:
 - e.g. SuSAv2 lplh+2ph2 PRD 94, 093004
 (2016)
- Improve primary interaction models in generators:
 - e.g. MK single pion production PRD 97, 013002 (2018)

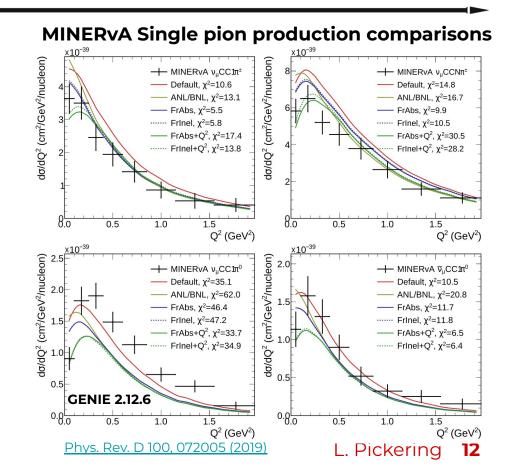
How do we try and improve them: Theory

- Improve nuclear response models in generators:
 - e.g. SuSAv2 lplh+2ph2 PRD 94, 093004
 (2016)
- Improve primary interaction models in generators:
 - e.g. MK single pion production PRD 97, 013002 (2018)
- Improve simplifications in the MC:
 - Un-doing factorisation
 - Better-capture:
 - initial and final state physics
 - lepton-hadron correlations.

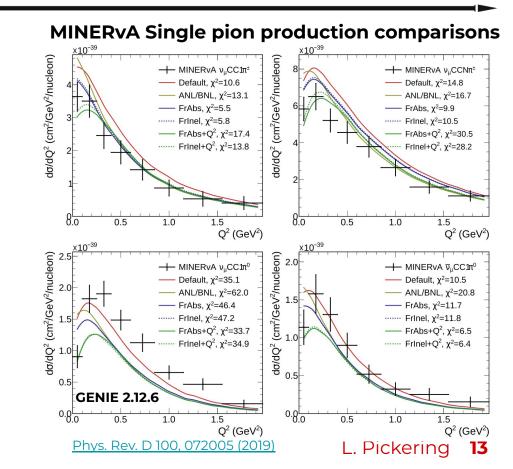


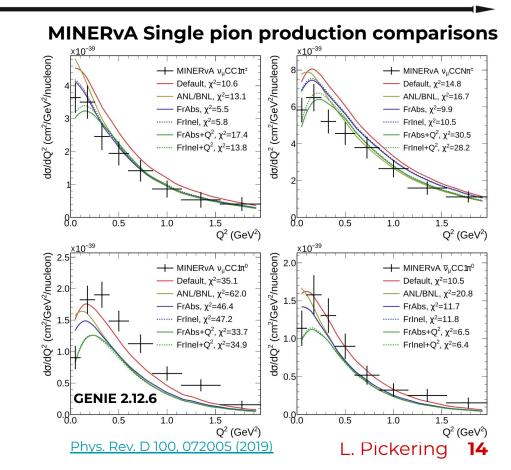
L. Pickering

10

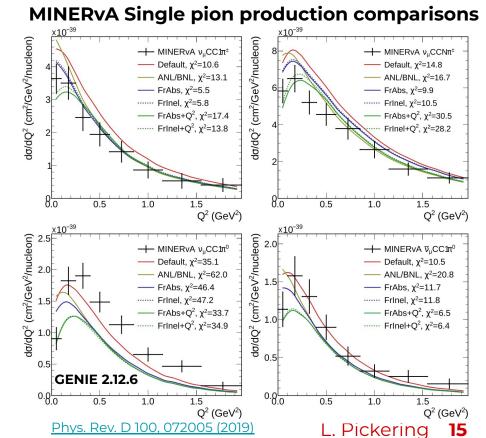

What about uncertainties?

- Need plausible variations of models that can 'cover' the extant data.
- Compare to historic data ⇒ well-motivated prediction and uncertainties:
 - Then assume model is predictive for new data
- If experimentalists don't have the ability to vary 'theory' parameters:
 - Have to make something up...




• **Ideal world:** model describes nature up to some unknown parameter values.

- Ideal world: model describes nature up to some unknown parameter values:
 - We don't live in that world.


- Ideal world: model describes nature up to some unknown parameter values:
 - We don't live in that world.

- Ideal world: model describes nature up to some unknown parameter values:
 - We don't live in that world.

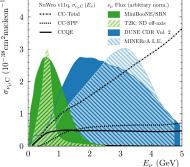
Dangers of tuning:

- Absorb data/MC discrepancy into poor parameterization.
- Propagate CV+uncerts from well-described projection to poorly described projection.
- *e.g.* Tune in inclusive lepton variables and predict hadronic shower.

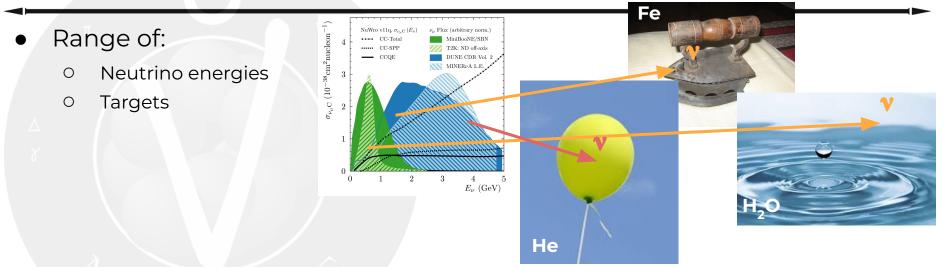
NUISANCE

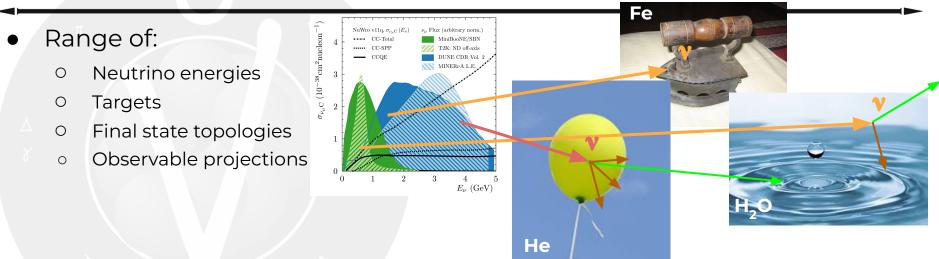
L. Pickering 16

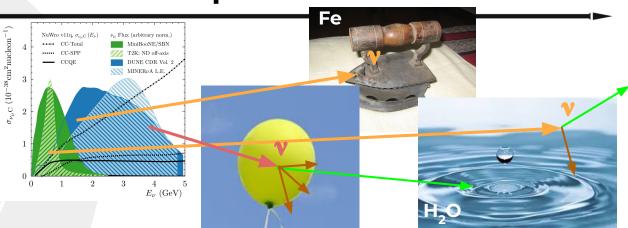
What a NUISANCE

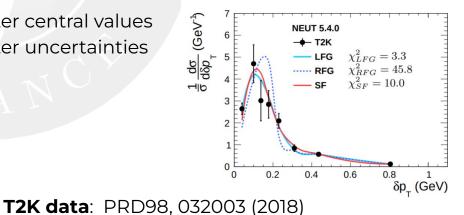

- Global neutrino scattering data comparator and model fitter:
 - Contains hundreds of published data sets with associated errors and signal definitions.
 - The most valuable part of NUISANCE is the person-hours that have been spent implementing and validating data!
- Applies experimental signal definitions to MC events from: GENIE, NEUT, NuWro, GiBUU, HepMC, ...
- Links to MC event generator interaction systematic uncertainty tools for model parameter variation.
- Code is open source so analyses can be reproduced and extended: <u>https://github.com/NUISANCEMC/nuisance</u>

L. Pickering 17


Who are we working with?

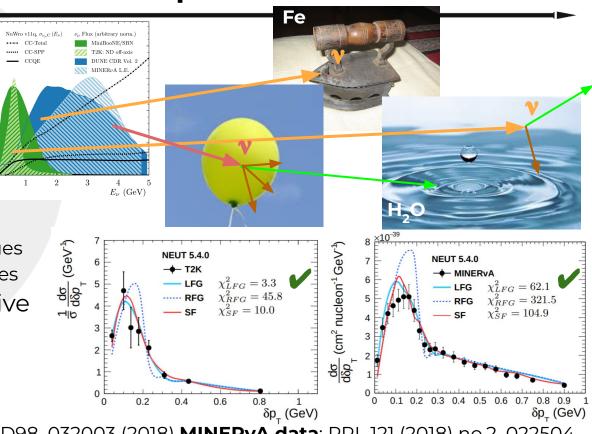

 $\sigma_{\nu_{\mu}C} \; (10^{-38} {\rm cm^2 nucleon^{-1}})$ NuWro v11q, $\sigma_{\nu_{\mu}C}(E_{\nu})$ Range of: ν_{μ} Flux (arbitrary norm.) • ----- CC-Total MiniBooNE/SBN ····· CC-SPP T2K: ND off-axis - CCOE MINER₂A L E Ο Neutrino energies 3





- Range of:
 - Neutrino energies
 - Targets
 - Final state topologies
 - Observable projections
- Sensitivity to:
 - Model choice
 - Free parameter central values
 - / Free parameter uncertainties

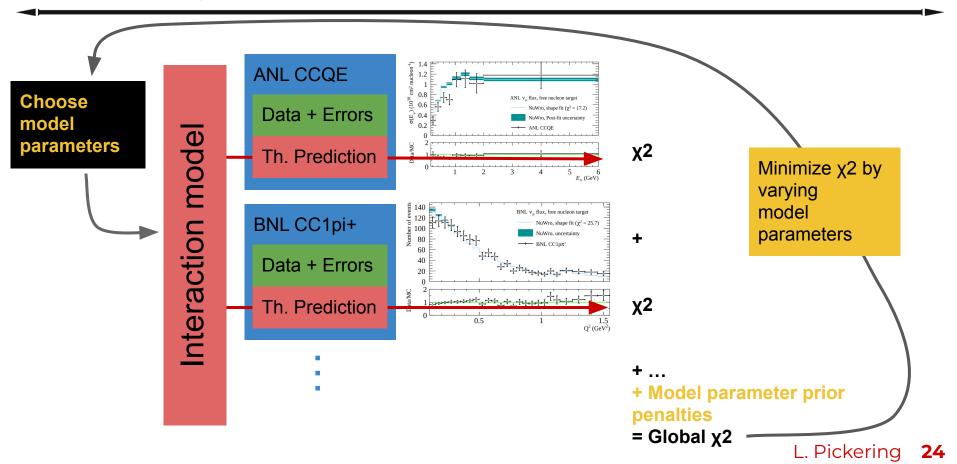
Plots: arXiv:1810.06043



L. Pickering 22

 $r_{\nu_{\mu}C} (10^{-38} \text{cm}^2)$

- Range of:
 - Neutrino energies Ο
 - Ο Targets
 - Final state topologies Ο
 - Observable projections 0
- Sensitivity to:
 - Model choice 0
 - Free parameter central values 0
 - Free parameter uncertainties 0
- Ability to make quantitative statements about GOF



T2K data: PRD98, 032003 (2018) MINERvA data: PRL 121 (2018) no.2, 022504 Plots: arXiv:1810.06043 L. Pickering

23

Anatomy of a Cross-section Fit

- Cross-section tune recipe:
 - Add all the data you can find

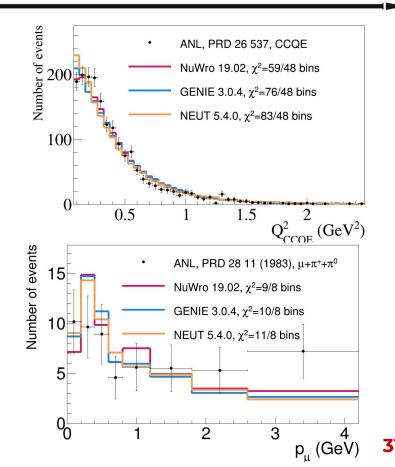
- Cross-section tune recipe:
 - Add all the data you can find
 - Stir free parameters until mixture is golden brown

- Cross-section tune recipe:
 - Add all the data you can find
 - Stir free parameters until mixture is golden brown
 - Serve for updated interaction model and correlated uncertainties!

- Cross-section tune recipe:
 - Add all the data you can find
 - Stir free parameters until mixture is golden brown
 - Serve for updated interaction model and correlated uncertainties!
- But... have to take care:
 - Model parameterizations can be hard to uniquely constrain.
 - Hard to consistently evaluate test statistics.
 - Incomplete data coverage:
 - e.g. Many measurements focus on just charged lepton kinematics.
 - Need to be predictive in hadron kinematics...
 - Signal definitions not always clear/well defined in the context of an experiment.
- These are problems that the community is working on together: we know things now that we didn't before, but it is still worth highlighting specifics in historic data to be aware of.

Some Example Comparisons

- Bubble Chamber lepton variables
- Nuclear-target CC0 π lepton variables
- Nuclear-target CCO π lepton-hadron correlation variables


Meet the Generators

	Version/ Tune Used	Nuclear-model + QE-like	Single Pion Production	Higher W	Fragmentation	FSI
NEUT	5.4.0	Valencia: - 1p1h+RPA - 2p2h	Rein-Sehgal + lepton mass effects	Bodek-Yang low Q ²	Pythia 5	Tuned Salcedo-Oset cascade
GENIE	v3.0.4 G1810a_0211 + bug-fixed splines	Valencia: - 1p1h+RPA - 2p2h	Rein-Sehgal 16 resonances non-interfering (BC Tuned)	Bodek-Yang low Q ²	AGKY+Pythia 6	Tuned effective single interaction (hA)
NuWRO	v19.02	- Benhar SF w/ opt. pot. - Valencia: RPA & 2p2h	Delta + Pythia Low W	Bodek-Yang low Q ²	Pythia 6	Tuned Salcedo-Oset cascade

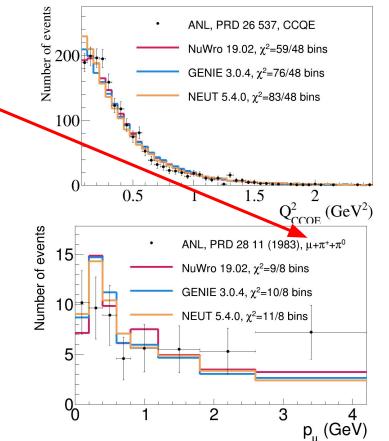
Comparisons to Bubble Chamber data

- (quasi-)free of any nuclear effects.
 - Granular reconstruction and unambiguous final state topologies.
 - Allows tuning of 'primary' neutrino nucleon/part interaction.

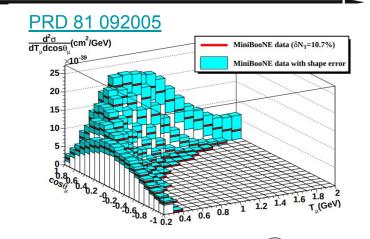
Comparisons to Bubble Chamber data

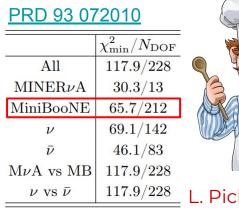
events (quasi-)free of any nuclear effects. ANL, PRD 26 537, CCQE Number of NuWro 19.02, $\chi^2 = 59/48$ bins Granular reconstruction and unambiguous GENIE 3.0.4, $\chi^2 = 76/48$ bins final state topologies. NEUT 5.4.0, $\chi^2 = 83/48$ bins Allows tuning of 'primary' neutrino Ο 100 nucleon/part interaction. 0.5 1.5 Q^2_{CCOE} (GeV²) Number of events ANL, PRD 28 11 (1983), μ+π⁺+π⁰ 5 NuWro 19.02, $\chi^2 = 9/8$ bins GENIE 3.0.4, $\chi^2 = 10/8$ bins NEUT 5.4.0, χ²=11/8 bins 5

2


3

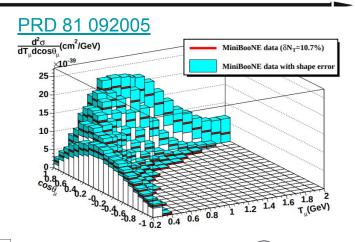
p_u (Ge


Comparisons to Bubble Chamber data


- (quasi-)free of any nuclear effects.
 - Granular reconstruction and unambiguous final state topologies.
 - Allows tuning of 'primary' neutrino nucleon/part interaction.
- Data is old with large statistical errors and often unknown systematic errors (largely flux).

Nuclear data: MiniBooNE CCQE

- Data sets without published, correlated errors are difficult to use in a global fit.
- MiniBooNE CCQE(like):
 - Many bins, no published error matrix.

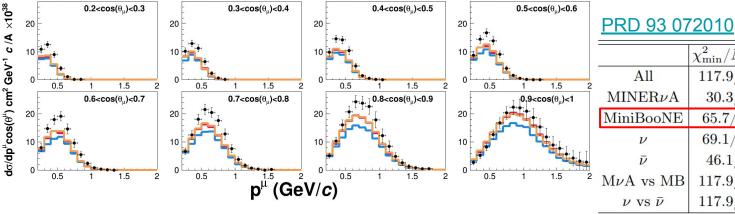


Nuclear data: MiniBooNE CCQE

- Data sets without published, correlated errors are difficult to use in a global fit.
- MiniBooNE CCQE(like):
 - Many bins, no published error matrix. Ο MiniBooNE, PRD 81 092005 (2010), v_u CCQE-Like NuWro 19.02 GOF **GENIE 3.0.4 NEUT 5.4.0** 0.2<cos(θ,)<0.3 0.3<cos(0,)<0.4 0.4<cos(0,)<0.5 20 20

 $\chi^2_{
m min}/N_{
m DOF}$

117.9/228

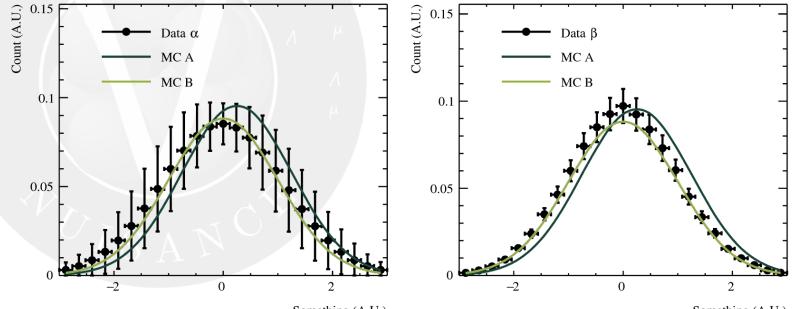

30.3/13

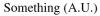
65.7/21269.1/142

46.1/83

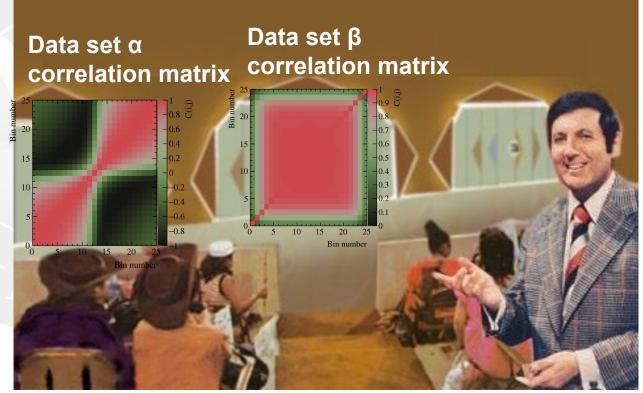
117.9/228

117.9/228

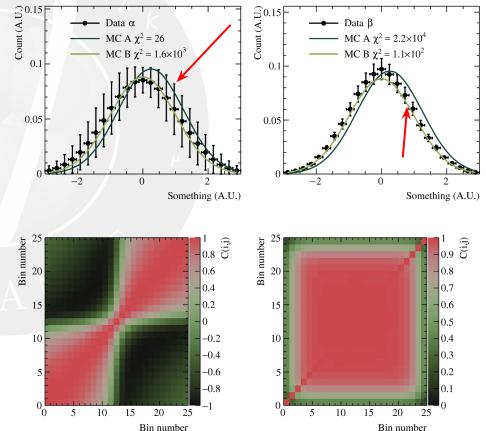

Let's Play... χ-by-eye!


L. Pickering **36**

Let's Play... χ-by-eye!

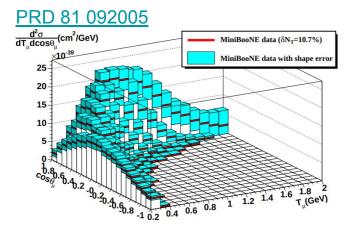

• For each 'data set', guess which MC prediction fits the data better.

Something (A.U.)


How About Now?

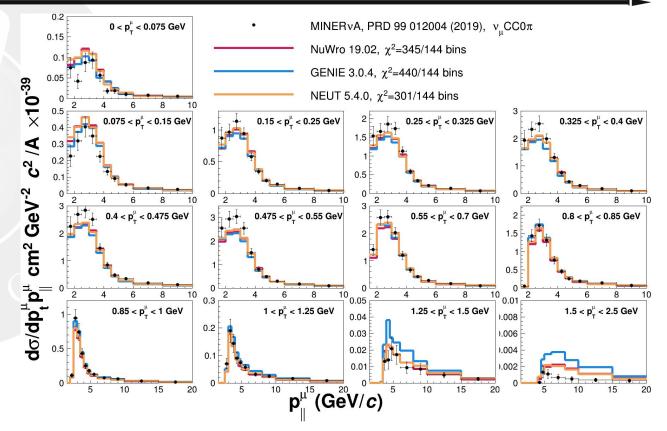
What you expected?

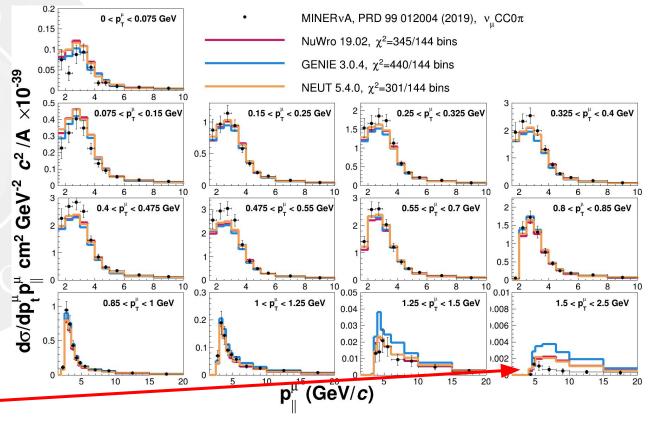
Systematic parameter allows normalization change. *e.g.* flux uncertainty.


L. Pickering **39**

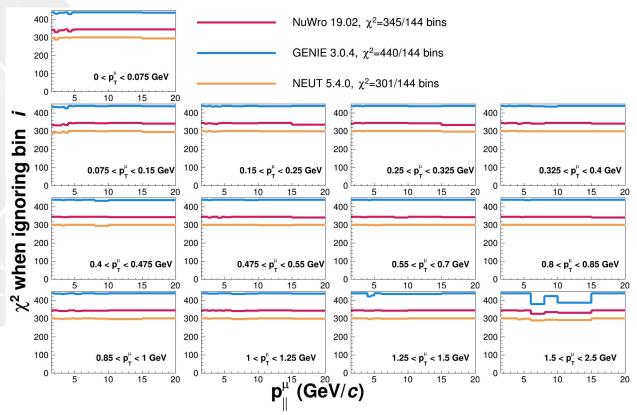
Systematic parameter allows shift in Something. *e.g.* separation energy

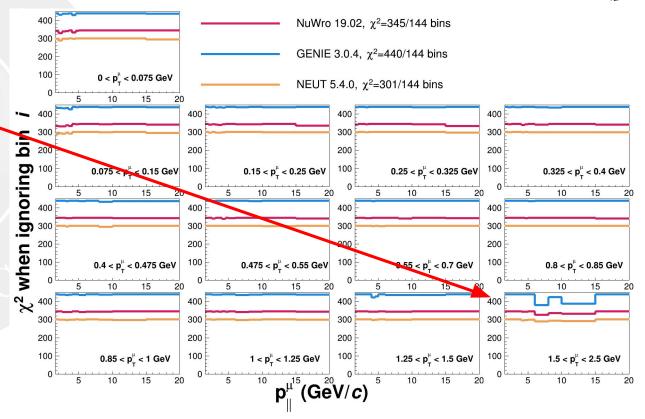
Nuclear data: MiniBooNE CCQE

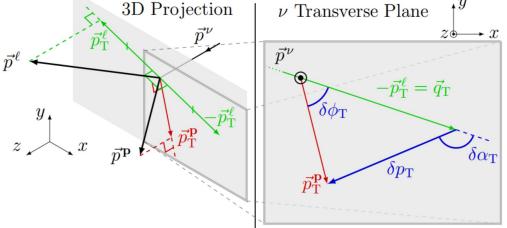

- Data sets without published correlated errors are difficult to use in a global fit.
- MiniBooNE CCQE(like):
 - Many bins, no published error matrix.
 - \circ $\;$ What should the contribution to the global GOF be
 - Fully uncorrelated: $\sim \sum_{i \in \text{bins}} (\text{Data}-\text{MC})_i^2$
 - Fully correlated: $\sim \sum_{i \in \text{bins}} (\text{Data}-\text{MC})_i^2 / \text{NBins}$
 - In reality, probably somewhere in between.
 - If used naively, will incorrectly dominate a tune and more data won't help...
- But, we want to use the information that this data holds, unsatisfactory to just ignore it...



Sensitive to neutrino energy (p_{II}) and momentum transfer (p_t) in a known flux


- Sensitive to neutrino energy (p_{II}) and momentum transfer (p_t) in a known flux
- Predicted ~well for bulk of distribution:
 - Higher angle poorly predicted

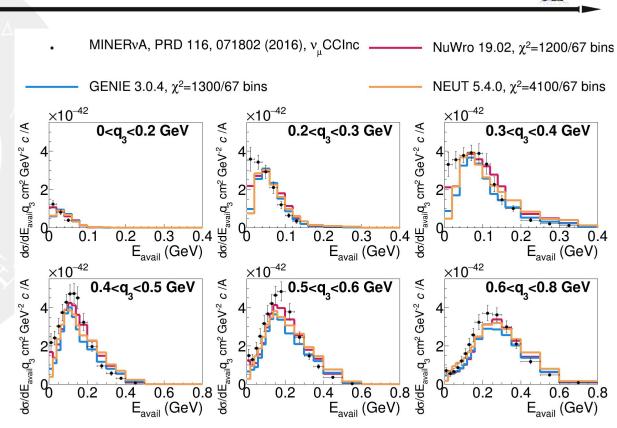

 Majority of difference comes
 from high angle bins.


- Majority of difference comes
 from high angle
 bins.
- Could mask out bad bins, but when to stop p-hacking...

MICHIGAN STATE UNIVERSITY

Single Transverse Variables

- Recent interest in lepton-hadron correlations:
 - Can be more sensitive to certain effects than lepton-/hadron-only
 - Efficiency/smearing corrections need to be treated with more care.
- Direction/magnitude of momentum imbalance is sensitive to initial and final state effects PRD 98 032003 (2018).

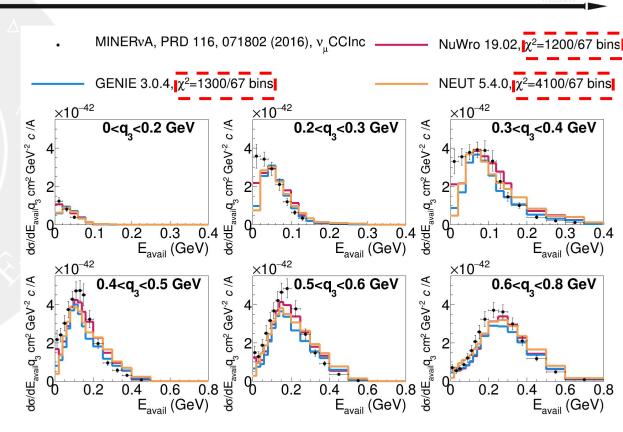

Transverse missing momentum

×10⁻³⁹ $\frac{d\sigma}{3\delta p_{T}} (cm^{2} nucleon^{-1} GeV^{-1} c)$ C P 0 8Signal phase space cuts chosen for T2K, PRD 98 032003 (2018), v, CC0πNp NuWro 19.02, x²=65/8 bins detector capabilities: GENIE 3.0.4, x²=18/8 bins Results in less model-dependent efficiency NEUT 5.4.0, χ²=6/8 bins Ο correction. T2K: 0 500 MeV < p_p 0.5 δp_{\perp} (GeV c⁻¹) 250 MeV < p_{_1}, 1 < cos(θ_{_1}) < -0.6 8<u>×10</u>-39 MINERVA: Ο d $\sigma/d\delta
ho_{T}$ (cm²/GeV/c/nucleon) MINERvA PRL 121 (2018) 022504, v CC0πNp 450 < p_p < 1200 MeV, 0 < θ_p < 70° 1.5 < p_μ < 10 GeV, 0 < θ_μ < 20° NuWro 19.02, x²=102/24 bins GENIE 3.0.4, x²=85/24 bins NEUT 5.4.0, χ²=79/24 bins 0 0.5 1.5 δp_{\perp} (GeV/c)

 Inclusive models described by q0/q3:

0

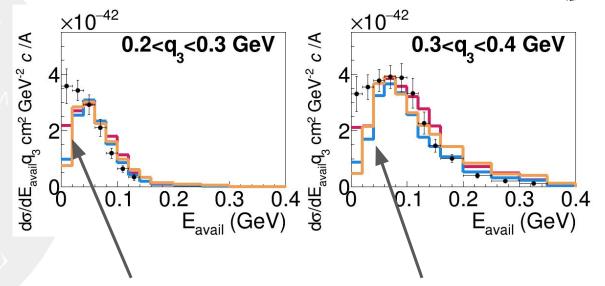
- Requires model-dependent reconstruction of EAvail and true momentum transfer.
- GOF is awful for all available models:
 - Inconclusive when comparing one bad fit to another bad fit.



 Inclusive models described by q0/q3:

0

- Requires model-dependent reconstruction of EAvail and true momentum transfer.
- GOF is awful for all available models:
 - Inconclusive when comparing one bad fit to another bad fit.



 Inclusive models described by q0/q3:

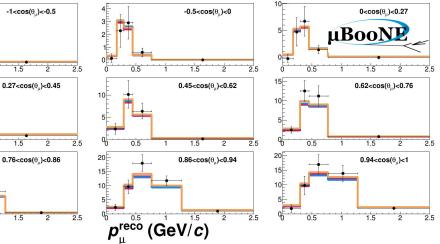
Ο

- Requires model-dependent reconstruction of EAvail and true momentum transfer.
- GOF is awful for all available models:
 - Inconclusive when comparing one bad fit to another bad fit.

Low energy transfer region especially poorly predicted.

Comparisons to Nuclear data: MicroBooNE

×10³⁹


c/A

GeV⁻¹

 $d\sigma/dp_{\mu}^{
m reco}~cm^2$

- Need to understand neutrino interactions on Ar40 target.
- Data release:
 - Reconstructed distributions
 - True→reco folding matrix
- Potentially useful technique to reduce model bias in published data.

MicroBooNE, arXiv:1905.09694, v_{μ} CCInc — NuWro 19.02, χ^2 =73/37 bins — GENIE 3.0.4, χ^2 =84/37 bins — NEUT 5.4.0, χ^2 =87/37 bins

Comparisons to Nuclear data: MicroBooNE

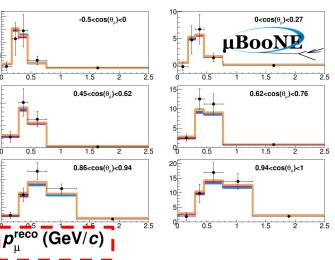
c/A ×10³⁹

GeV⁻¹

cm²

do/d/

-1<cos(0.)<-0.5

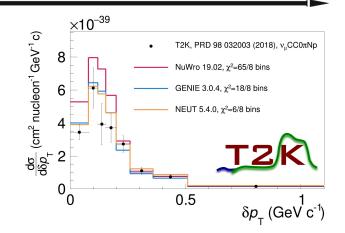

0.27<cos(0,)<0.45

0.76<cos(0_)<0.86

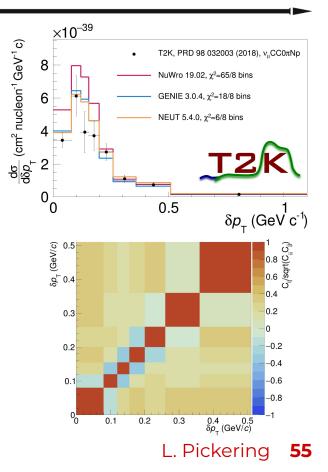
1.5

- Need to understand neutrino interactions on Ar40 target.
- Data release:
 Reconstructed distributions
 True→reco folding matrix
- Potentially useful technique to reduce model bias in published data.

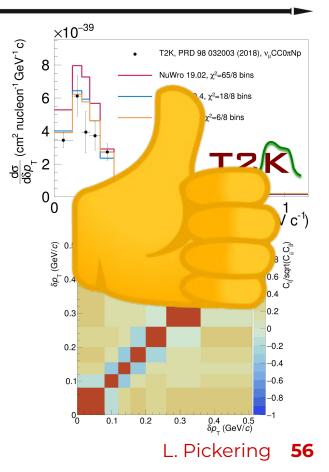
MicroBooNE, arXiv:1905.09694, ν_{μ} CCInc — NuWro 19.02, χ^2 =73/37 bins — GENIE 3.0.4, χ^2 =84/37 bins NEUT 5.4.0, χ^2 =87/37 bins



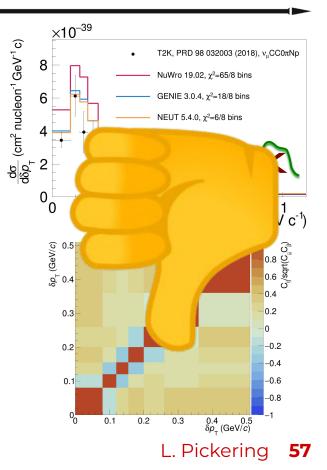
What Fitters Want



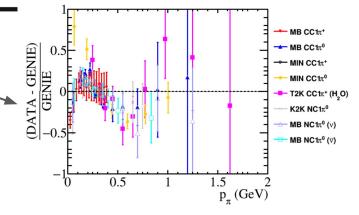
- Minimize model bias while maximising efficacy of data:
 - Well-understood selection efficiency over signal phase space.
 - Projections the require minimal MC correction.
- Publish errors with bin-to-bin correlations.

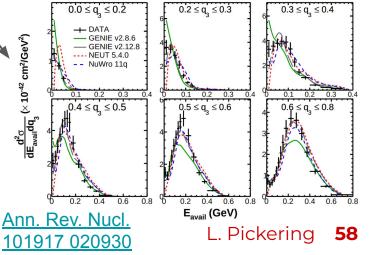


- Minimize model bias while maximising efficacy of data:
 - Well-understood selection efficiency over signal phase space.
 - Projections the require minimal MC correction.
- Publish errors with bin-to-bin correlations.



- Minimize model bias while maximising efficacy of data:
 - Well-understood selection efficiency over signal phase space.
 - Projections the require minimal MC correction.
- Publish errors with bin-to-bin correlations.


- Minimize model bias while maximising efficacy of data:
 - Well-understood selection efficiency over signal phase space.
 - Projections the require minimal MC correction.
- Publish errors with bin-to-bin correlations.
 - Wherever possible:
 - Between projections
 - Between datasets.



Why NUISANCE might be right for you

- Consistently comparing your model predictions to many data-sets.
- Producing comparisons to your new data set with a variety of MCs --without having to be an expert.
- Ensure that comparisons to your data are done correctly.
- Tools make cross-section parameter fitting mechanically simple:
 - But, garbage in \rightarrow garbage out.
 - Choice of data, choice of parameters, structure of fit is the tough bit.

Future

- More data: Your data!
 - Want to increase use of electron-scattering data
 - Possibly also include nucleon/pion scattering data for FSI/SI tuning.
- More comparisons:
 - New generators everywhere: GENIE v3, NEUT 5.4.0, NuWro 2019, GiBUU 2019
 - Aim to produce comprehensive, quantitative model comparisons with available data in the next 6--12 months!
- More tunes:
 - Recent collaboration with MINERvA on fitting GENIE to their published pion production data fruitful—looking forward to more collaboration!
- MINIERVA

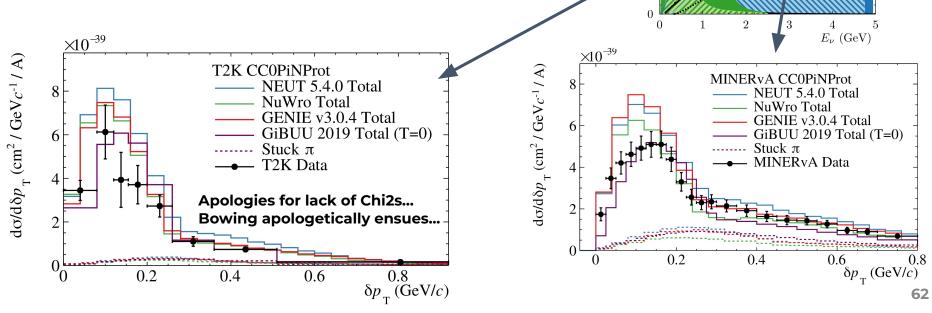
L. Pickerir

- Sharing and comparing:
 - Can apply MINERvA, T2K, and NOvA in-house tunes on top of relevant 'base' models.

Summary

- NUISANCE is a tool for generator--data comparisons
 - Contains a large number of datasets and associated signal definitions for you to use.
 - Has tools for performing 'global' cross-section comparisons and tunes.
 - But: You have to be aware of the details of the data you comparing to!
- We hope that you develop a NUISANCE sample for your new dataset before/during publication:
 - Ensure that the data is used correctly and effectively while it's hot stuff!
 - > Support is on hand if you need help.
- If any of this sounds interesting, get in touch, plenty of work and development that can be done by people with a range of experiences!

Thanks for listening


L. Pickering

THERE IS ALWAYS HOPE

NuFACT2018, VT, Blacksburg

Data Comparison: δp_{T}

- T2K: 1802.05078
- MINERvA: 1805.05486
- (GENIE norm may not be quite right to a few %, its fine for here, but probably not best to show these plots as is elsewhere)

https://doi.org/10.1016/j.physrep.2018.08.003

 ν_{μ} Flux (arbitrary norm.)

MiniBooNE/SBN

T2K: ND off-axis

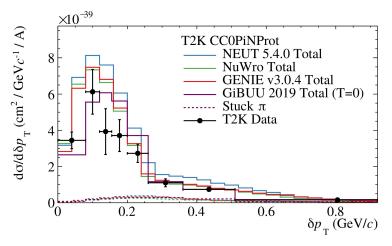
MINER ν A L.E

NuWro v11q, $\sigma_{\nu,C}(E_{\nu})$

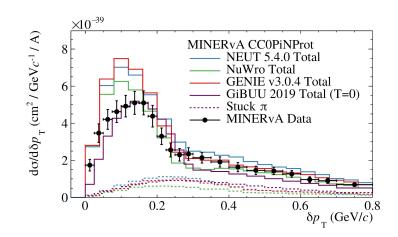
CC-SPP

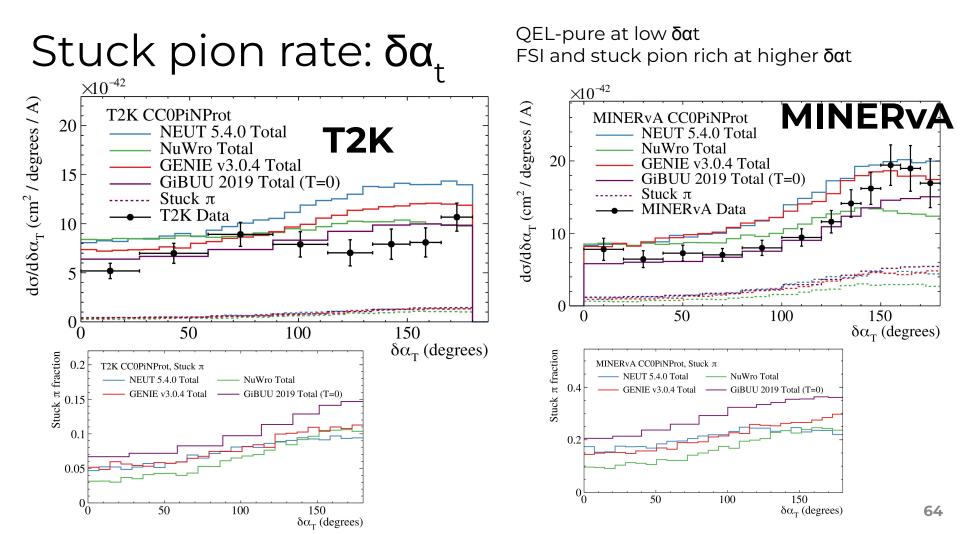
CCQE

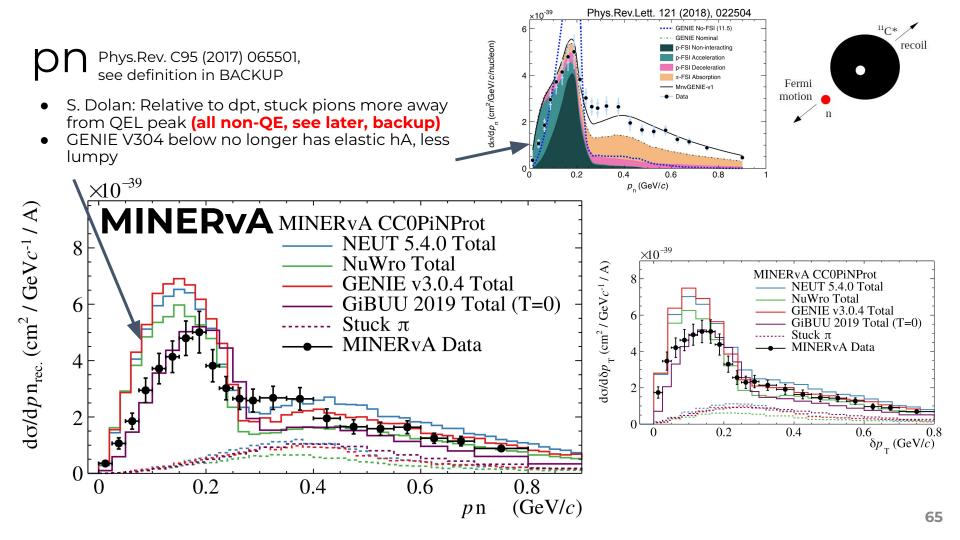
CC-Total


....

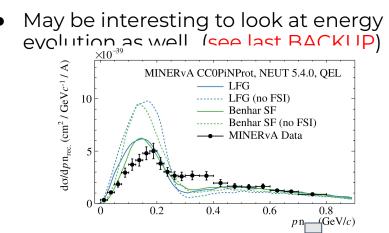
 $\tau_{\nu_{\mu}C} (10^{-38} \text{cm}^2 \text{nucleon})$

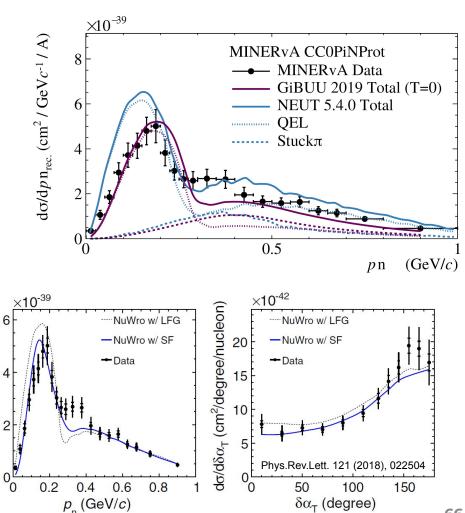

Signal definitions


- T2K: 1802.05078
- MINERvA: 1805.05486
- (GENIE norm may not be quite right to a few %, its fine for here, but probably not best to show these plots as is elsewhere)

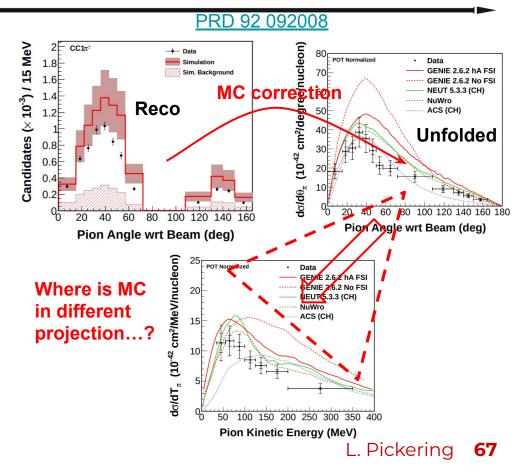

500 MeV < pp 250 MeV < pmu, 1 < cos(theta_mu) < -0.6

450 < pp < 1200 MeV, 0 < theta_p < 70° 1.5 < pmu < 10 GeV, 0 < theta_mu < 20°

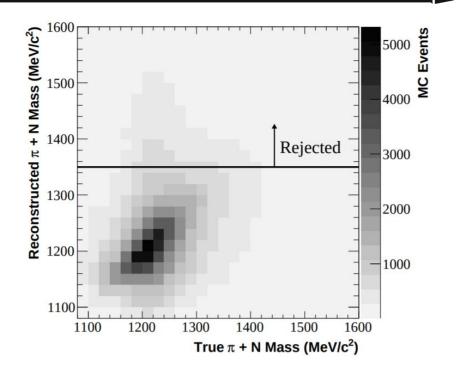




More pn

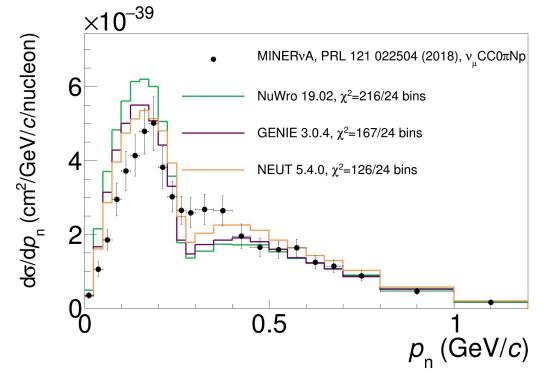

- Also wanted to look at stuck pi vs. 2p2h
 - GiBUU predicts no second peak for QEL, but NEUT does.
- And FSI/Nuclear momentum/binding model changes:
 - LFG/SF in NEUT qualitatively similar, contrary to NuWro
 - FSI mostly interacts with signal selections

dơ/dp_n (cm²/GeV/*c*/nucleon)



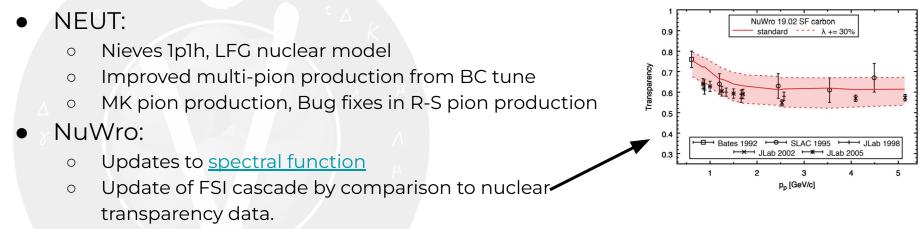
- For the charged pion analyses:
 - ~100% efficiency correction at high angle.
 - Where is this 'MC fill-in' in other distributions?
- Upcoming re-analysis still no phase space cuts.
- No covariance between distributions (pµ, θµ, Tπ, θπ, Q²) or samples (π+, π0, υ, υ):
 - Difficult to consistently use together in a meta-analysis.

MiniBooNE 1Pi+


- Rejection only in selection, not signal definition:
 - Will be efficiency corrected back with NUANCE-calculated efficiency.
 - Better to include analysis cuts in both signal and selection where possible, then handle new out-of-phase space backgrounds, but smaller, less model dependent efficiency corrections.

MINERvA: Initial state neutron momentum

 Momentum imbalance in all three dimensions is sensitive to initial state fermi nucleon momentum distribution.
 GOF is poor for all models.

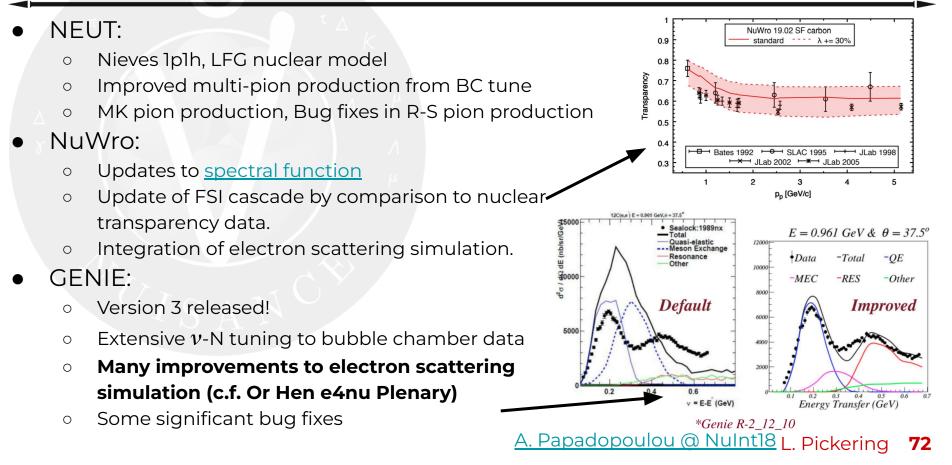

Notable Recent Developments

• NEUT:

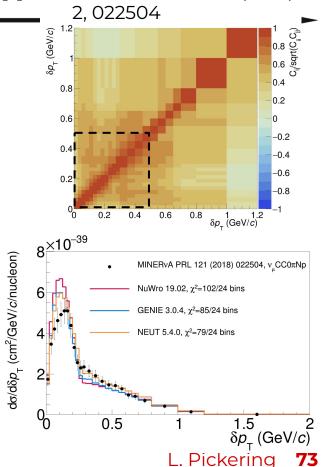
- Nieves 1p1h, LFG nuclear model
- Improved multi-pion production from BC tune
- MK pion production, Bug fixes in R-S pion production

Notable Recent Developments

Phys. Rev. C 100, 015505 (2019)



• Integration of electron scattering simulation.


Notable Recent Developments

Phys. Rev. C 100, 015505 (2019)

Transverse missing momentum

• MINERvA error matrix provides a tight shape constraint around the peak which drives the high GOF.

MINERVA: PRL 121 (2018)

Transverse missing momentum

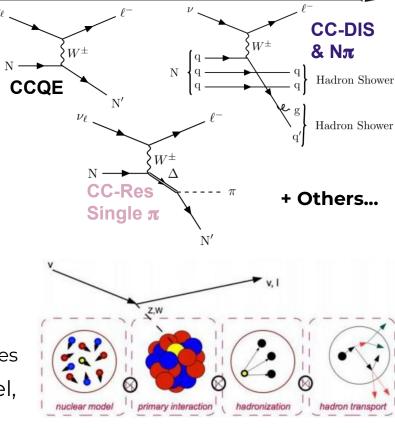
- MINERvA error matrix provides a tight shape constraint around the peak which drives the high GOF.
- Equivalent matrix for the T2K result exhibits anti-correlations between neighbouring bins:
 - More expected for uncertainties that cause bin migrations.

Gen Summary

- The loftiest goals of neutrino oscillation physics depend on the accuracy of event generator predictions and associated uncertainties.
- Recent u_µ→0π data releases have been more statistically robust, but GOF between available models is generally poor
 - Room for improvement in generator predictions, xsec analyses and data releases and global fitting methodology.
 - Correct, correlated errors are a comparators best friend!
- More recent work on removing assumptions in generator factorization and implementing state-of-the-art predictions is promising!

Why do we need good interaction Models?

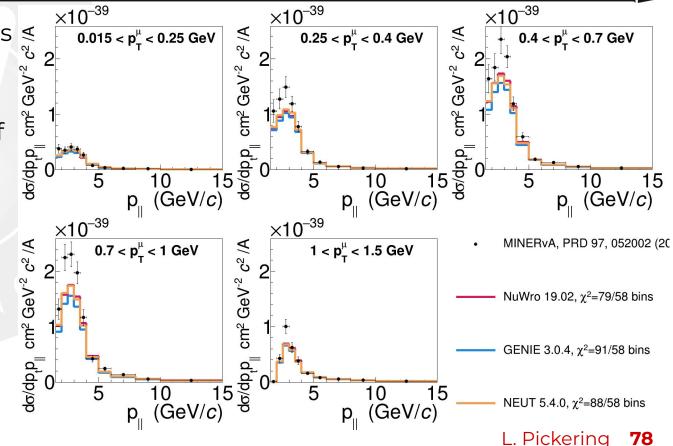
- The aim is to perform measurements of neutrino oscillations.
 - Oscillation occurs as a function of true neutrino energy, which is **not observable**.
- We use models to estimate: $D(\mathbf{x}_{obs}|\mathbf{x}_{true})$: If we see \mathbf{x}_{obs} , what was the true neutrino energy? We need to understand:
 - Selected backgrounds
 - Selection efficiency
 - Exclusive channel interaction rates and kinematics
- Wrong model \rightarrow wrong inferred $P_{osc}(E_{\nu})$.


$$N_{\text{near}}(\mathbf{x}_{\text{obs}}) = \int d\mathbf{x}_{\text{true}} \underbrace{\mathbf{D}_{\text{near}}(\mathbf{x}_{\text{obs}} | \mathbf{x}_{\text{true}})}_{\text{Smearing, Eff., Pur.}} \underbrace{N_{\text{targ}}\sigma(\mathbf{x}_{\text{true}})\Phi(E_{\nu})}_{N_{\text{Int}}(\mathbf{x}_{\text{true}})}$$

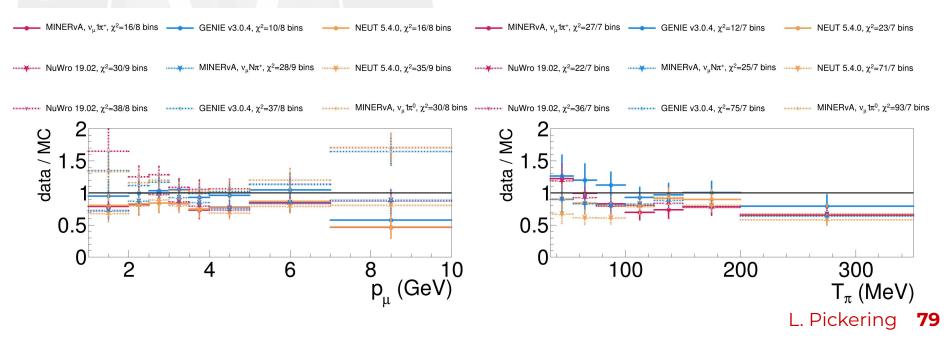
$$N_{\text{far}}\left(\mathbf{x}_{\text{obs}}\right) = \int d\mathbf{x}_{\text{true}} \underbrace{\mathbf{D}_{\text{far}}\left(\mathbf{x}_{\text{obs}} | \mathbf{x}_{\text{true}}\right)}_{\text{Smearing, Eff., Pur.}} \underbrace{N_{\text{targ}}\sigma\left(\mathbf{x}_{\text{true}}\right)\Phi\left(E_{\nu}\right)P_{osc}\left(E_{\nu}\right)}_{N_{\text{Int}}\left(\mathbf{x}_{\text{true}}\right)}$$

$$\begin{array}{c} 2.55 \\ \hline 0 \\ 2.50 \\ \hline 0 \\ 2.45 \\ 2.40 \\ 2.35 \\ \hline 38 \\ 40 \\ 42 \\ 44 \\ 46 \\ 48 \\ 50 \\ 52 \\ \hline 0 \\ 48 \\ 50 \\ 52 \\ \hline 0 \\ 48 \\ 623 \\ \hline 0 \\ 1 \\ 1 \\ 2.21802 \end{array}$$

What is a Neutrino Event Generator


- Selects neutrino 'events' from interaction models:
 - Over a range of neutrino energy and species,
 - For a number of 'primary' channels:
 - Neutrino--nucleus (COHPi, CvNS)
 - Neutrino--multi-nucleon (2p2h)
 - Neutrino--nucleon (QE, RESPi)
 - Neutrino--parton (DIS)
 - In a nuclear environment:
 - Fermi motion distribution
 - Removal energy
 - Collective effects (RPA)
 - Final state re-interactions of primary particles
- Often factorises the simulation of nuclear model, primary interaction, and FSIs.

L. Pickering


MINERvA Opi anti-neutrino-mode

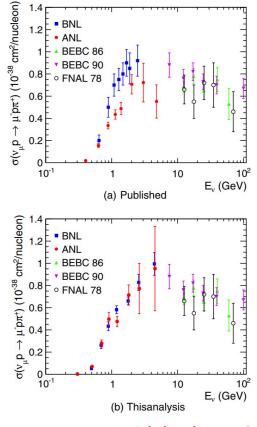
- χ-by-eye GOF seems ≤ Norse (to me) than Calculated GOF.
- Possibly because of PPP:
 - Smaller MC normalization can give 'artificially' low χ² if uncertainty is not fully characterized.
- Need to be wary of PPP when fitting.

MINERvA 1pi neutrino-mode

- MINERvA have released a number of pion datasets, each with multiple projections
 - Lots of information, much more than shown here.
 - Fairly poorly predicted all around.
- arXiv:1903.01558: discusses some of the difficulties seen fitting these data.

Gen Future: 1

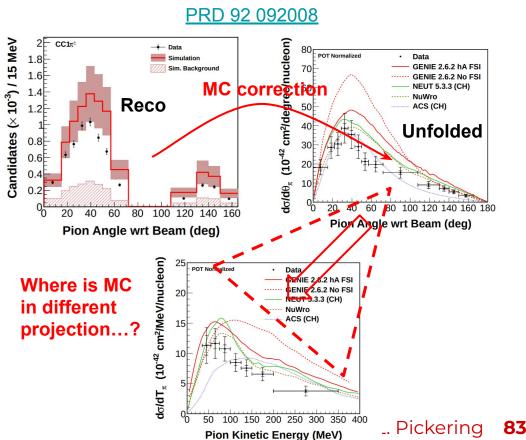
- Last few years seen increase in sophistication of Opi analyses
 - Lepton/hadron correlations
 - Less Model-dependent selections and projections
 - Would be very useful to see similar renaissance in pion production datasets.
- Future MicroBooNE (and SBND) data sets will be critical for model builders to benchmark and develop before DUNE and Fermilab Short Baseline program.


Gen Future: 2

- These last two years have seen an uptick in model development:
 - GENIE tuning, v3, NEUT and NuWro model developments, ECT* Trento workshops
 - Lots of progress due to closer interaction with theory community, need to continue!
- But given how much LBL programs will rely on the predictions and uncertainties, the community is quite under person-powered...
 Plenty of room for important work and novel intellectual contribution
- Can learn a lot of the necessary nuclear physics from electron scattering: GENIE + NuWro have e-A modes, ongoing work by e4nu.
- See what GiBUU has to say for itself...

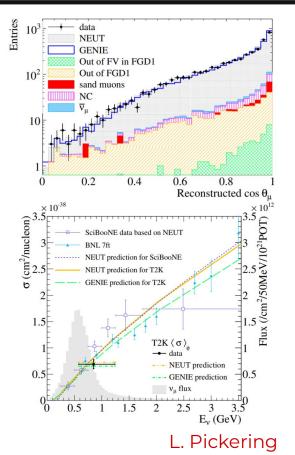
The data is the data is the data

- Sometimes the data is not the data is not the data.
- ANL/BNL CC1pi+1proton discrepancy:
 - Data biased by problems in the neutrino flux models
 - ~ Reconciled by re-analysis.
 - But, no correction for Q2 distribution!
- Need to be familiar with included data sets and tensions between them.
 - May need to assign *confidence* weights to samples in the global GOF.

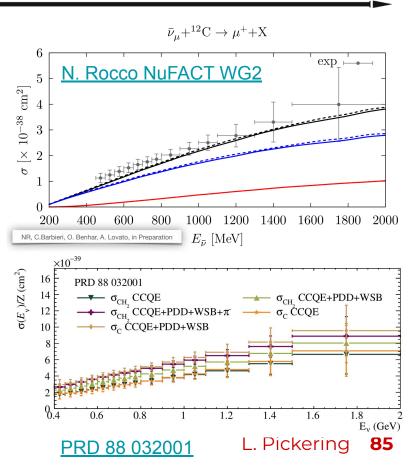


PRD 90 112017

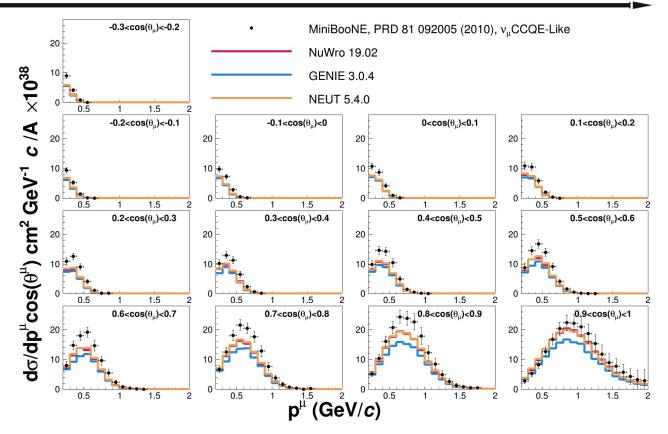
Hidden Model Biases 1


- Un-smearing and efficiency corrections introduce bias.
- From a fitters point of view, it is better to cut out regions of very poor efficiency:
 - Don't want to compare to model-of-the-day contaminated 'data'.
- Very helpful that such plots are in the publication!
- *N.B.* These problems are tricky and ubiquitous, not specifically calling out this publication.

Hidden Model Biases 2: Stealth mode



- It isn't always so clear: e.g. ND280 CCIncl
 - Practically cannot measure $\cos(\theta\mu) < 0$.
 - But, publish total cross-section.
- Similar out-of-acceptance corrections in many recent measurements: *Fiducial* cross-sections are much preferred!


Experimental Signal Definitions

- Not always fully clear from the publication:
 - Getting this correct is essential for interpreting the data.
- e.g. MiniBooNE CCQE C12 data, subtracts:
 - Wrong-sign background CH2.08 component
 - H2.08 component
 - non-QE component (PDD)
 - o Mis-ID'd π-
- All predicted by NUANCE...
- But, the background subtractions are provided:
 - Might be better to produce H and v-C12 predictions and compare to the less-corrected data.

MiniBooNE CCQE-Like

- Not possible to calculate useful GOF, so I'm not going to attempt to...
- The data here is the 'less corrected' CCQE-like data:
 - No pionless delta decay subtraction (subset of MEC diagrams).

L. Pickering 86

Data In NUISANCE

Bubble Chamber:

ANL: 7 selections, 56 projections
BEBC: 6 sel. nu+nubar, 11 proj.
BNL: 4 sel., 15 proj.
FNAL: 3 sel., nu+nubar, 5 proj.
Gargamelle: 1 sel., 1 proj.

Nuclear:

C:

```
MINERvA: 3 sel., 6 proj.
```

CH:

T2K: 9 sel. 24 proj.

MINERVA: 10 sel., nu+nubar, 106 proj. SciBooNE: 1 sel. 16 proj.

CH₂:

```
MiniBooNE: 5 sel., 33 proj.
```

Nuclear: H,0: **K2K:** 1 sel., 1 proj. **T2K:** 1 sel. 7proj. Ar: ArgoNeuT: 3 sel., nu+nubar, 12 proj. MicroBooNE: 1 sel. 1 proj. Fe: MINERVA: 3 sel., 6 proj. Pb: MINERvA: 3 sel., 6 proj. **Electron Scattering:**

Virginia QE Archive

L. Pickering 87